Damping Low Frequency Oscillations in Power System using Quadratic Gaussian Technique based
نویسنده
چکیده
The aim of this paper is to examine the effect of inclusion of a linear quadratic Gaussian controller instead of the conventional AVR with the existence of a PSS for improving the dynamic stability of power system. The present work introduces a computational methodology that adopted a Linear Quadratic Gaussian (LQG) controller to control the generator. In this method the models of both the synchronous generator and the PSS were assumed to be Linear, depending on this method the controller power consumption was minimized depending on some performance index, which is assumed to be Quadratic. The Two Degree of Freedom (2DOF) structure was adopted, in which two controllers are used, the first one is the LQG controller and the second one is the integral controller. The proposed controller has been checked and investigated with simulations run under Matlab environment on single machine infinite bus (SMIB) system and compared with the traditional design methods. From these results, it is clear that the LQG controller can enhances the steady state stability very clearly. The results also show that the use of the LQG, controller increases the damping torque that substitutes the need to the Power System Stabilizer (PSS). General Terms Power system stabilizer, synchronous generator, machine dynamics, excitation system.
منابع مشابه
A Multi-Objective HBMO-Based New FC-MCR Compensator for Damping of Power System Oscillations
In this paper, a novel compensator based on Magnetically Controlled Reactor with Fixed Capacitor banks (FC-MCR) is introduced and then power system stability in presence of this compensator is studied using an intelligent control method. The problem of robust FC-MCR-based damping controller design is formulated as a multi-objective optimization problem. The multi-objective problem is concocted ...
متن کاملOptimization of Conventional Stabilizers Parameter of Two Machine Power System Linked by SSSC Using CHSA Technique
This paper presents a method for damping of low frequency oscillations (LFO) in a power system. The powersystem contains static synchronous series compensators (SSSC) which using a chaotic harmony searchalgorithm (CHSA), optimizes the lead-lag damping stabilizer. In fact, the main target of this paper isoptimization of selected gains with the time domain-based objective function, which is solve...
متن کاملLow Frequency Oscillations Suppression via CPSO based Damping Controller
In this paper, the Unified Power Flow Controller (UPFC) is enhanced with a Chaotic Particle Swarm Optimization (CPSO) Damping Controller in order to mitigate the Low Frequency Oscillations (LFO) in a Single Machine Infinite Bus (SMIB) power system. The designed damping controller is an optimized lead-lag controller, which extracts the speed deviation of the generator rotor and generates the out...
متن کاملFACTS Control Parameters Identification for Enhancement of Power System Stability
The aim of this paper is to investigate a novel approach for output feedback damping controller design ofSTATCOM in order to enhance the damping of power system low frequency oscillations (LFO). The design ofoutput feedback controller is considered as an optimization problem according with the time domain-basedobjective function which is solved by a honey bee mating optimization algorithm (HBMO...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملA new control strategy for SSSC to improve low-frequency oscillations damping
When power systems are expanded and connected together with weak tie lines, the low-frequency oscillations are increased and the stability margin of the power system decreases. Therefore, when designing the transmission system to be used, it is necessary to maintain the dynamic stability of the power system, and to make sure to have the most possible stability margin. SSSC is a FACTS device con...
متن کامل